Abstract

Salinity is one of the major abiotic stresses that affect crop productivity. Identification of the potential novel genes responsible for salt tolerance in barley will contribute to understanding the molecular mechanism of barley responses to salt stress. We compared changes in transcriptome between Hua 11 (a salt-tolerant genotype) and Hua 30 (a salt sensitive genotype) in response to salt stress at the seedling stage using barley cDNA microarrays. In total, 557 and 247 salt-responsive genes were expressed exclusively in the shoot and root tissue of the salt-tolerant genotype, respectively. Among these genes, a number of signal-related genes, transcription factors and compatible solutes were identified and some of these genes were carefully discussed. Notably, a LysM RLK was firstly found involved in salt stress response. Moreover, key enzymes in the pathways of jasmonic acid biosynthesis, lipid metabolism and indole-3-acetic acid homeostasis were specifically affected by salt stress in salt tolerance genotype. These salt-responsive genes and biochemical pathways identified in this study could provide further information for understanding the mechanisms of salt tolerance in barley.

Highlights

  • Due to various biotic and abiotic stress factors under field conditions, crop plant yield reduction can reach more than 50% [1]

  • No significant difference at the seedling stage was observed between the two genotypes under normal conditions (Figure 1(a)), while under severe salt stress (300 Mm NaCl), phenotypic changes were observed in Hua 30 compared with Hua 11: first leaves apex turned yellow (Figure 1(c)), reduced growth (Figure 1(c)), and the severe dehydration of new leaves (Figure 1(d))

  • In our research a lot of salt stress-related genes were induced by other abiotic stresses, supporting current view of cross talk between several kinds of abiotic stresses

Read more

Summary

Introduction

Due to various biotic and abiotic stress factors under field conditions, crop plant yield reduction can reach more than 50% [1]. Among these abiotic stresses, salinity is the most severe environmental stress affecting more than 800 million hectares of land throughout the world [2, 3]. To cope with the detrimental effects of various abiotic stresses, crops have evolved many mechanisms to increase their tolerance, including physical adaptations, and interactive molecular and cellular changes [6]. Understanding the mechanisms of signal transduction is of fundamental importance to biology and essential for the continued development of rational breeding and transgenic strategies to improve stress tolerance in crops [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call