Abstract
BackgroundAflatoxin contamination caused by Aspergillus flavus in peanut (Arachis hypogaea) including in pre- and post-harvest stages seriously affects industry development and human health. Even though resistance to aflatoxin production in post-harvest peanut has been identified, its molecular mechanism has been poorly understood. To understand the mechanism of peanut response to aflatoxin production by A. flavus, RNA-seq was used for global transcriptome profiling of post-harvest seed of resistant (Zhonghua 6) and susceptible (Zhonghua 12) peanut genotypes under the fungus infection and aflatoxin production stress.ResultA total of 128.72 Gb of high-quality bases were generated and assembled into 128, 725 unigenes (average length 765 bp). About 62, 352 unigenes (48.43 %) were annotated in the NCBI non-redundant protein sequences, NCBI non-redundant nucleotide sequences, Swiss-Prot, KEGG Ortholog, Protein family, Gene Ontology, or eukaryotic Ortholog Groups database and more than 93 % of the unigenes were expressed in the samples. Among obtained 30, 143 differentially expressed unigenes (DEGs), 842 potential defense-related genes, including nucleotide binding site-leucine-rich repeat proteins, polygalacturonase inhibitor proteins, leucine-rich repeat receptor-like kinases, mitogen-activated protein kinase, transcription factors, ADP-ribosylation factors, pathogenesis-related proteins and crucial factors of other defense-related pathways, might contribute to peanut response to aflatoxin production. Notably, DEGs involved in phenylpropanoid-derived compounds biosynthetic pathway were induced to higher levels in the resistant genotype than in the susceptible one. Flavonoid, stilbenoid and phenylpropanoid biosynthesis pathways were enriched only in the resistant genotype.ConclusionsThis study provided the first comprehensive analysis of transcriptome of post-harvest peanut seeds in response to aflatoxin production, and would contribute to better understanding of molecular interaction between peanut and A. flavus. The data generated in this study would be a valuable resource for genetic and genomic studies on crops resistance to aflatoxin contamination.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0738-z) contains supplementary material, which is available to authorized users.
Highlights
Aflatoxin contamination caused by Aspergillus flavus in peanut (Arachis hypogaea) including in pre- and post-harvest stages seriously affects industry development and human health
The data generated in this study would be a valuable resource for genetic and genomic studies on crops resistance to aflatoxin contamination
We identified 45 differentially expressed unigenes (DEGs) involved in phytohormonal metabolism and signaling pathways that were up- or downregulated in response to aflatoxin production, including salicylic acid (SA), ethylene (ET), and abscisic acid (ABA)
Summary
Aflatoxin contamination caused by Aspergillus flavus in peanut (Arachis hypogaea) including in pre- and post-harvest stages seriously affects industry development and human health. Even though resistance to aflatoxin production in post-harvest peanut has been identified, its molecular mechanism has been poorly understood. With appropriate drying, storing, processing, transporting and monitoring, healthy peanuts harvested from normal growth conditions are processed into secure and nutritious products for human/ animal consumption. Post-harvest aflatoxin contamination incurs significant economic costs, such as produce and market value losses, health care and associated disease surveillance, and for monitoring and mitigation of aflatoxin in peanut commodities [2, 11]. Several management practices, including proper storage and transportation conditions, strict monitoring measures, and breeding cultivars for resistance to biotic and abiotic stresses, could prevent and/or reduce post-harvest aflatoxin contamination. The resistance to post-harvest aflatoxin contamination in peanut hasn’t been well understood
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.