Abstract

Exposure and depuration experiments for Gammarus pulex and Daphnia magna were conducted to quantitatively analyze biotransformation products (BTPs) of organic micropollutants (tramadol, irgarol, and terbutryn). Quantification for BTPs without available standards was performed using an estimation method based on physicochemical properties. Time-series of internal concentrations of micropollutants and BTPs were used to estimate the toxicokinetic rates describing uptake, elimination, and biotransformation processes. Bioaccumulation factors (BAF) for the parents and retention potential factors (RPF), representing the ratio of the internal amount of BTPs to the parent at steady state, were calculated. Nonlinear correlation of excretion rates with hydrophobicity indicates that BTPs with lower hydrophobicity are not always excreted faster than the parent compound. For irgarol, G.pulex showed comparable elimination, but greater uptake and BAF/RPF values than D.magna. Further, G. pulex had a whole set of secondary transformations that D. magna lacked. Tramadol was transformed more and faster than irgarol and there were large differences in toxicokinetic rates for the structurally similar compounds irgarol and terbutryn. Thus, predictability of toxicokinetics across species and compounds needs to consider biotransformation and may be more challenging than previously thought because we found large differences in closely related species and similar chemical structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.