Abstract

BackgroundEcotoxicological studies on the insensitive munitions formulation IMX-101 and its components 2,4-dinitroanisole (DNAN), nitroguanidine (NQ) and nitrotriazolone (NTO) in various organisms showed that DNAN was the main contributor to the overall toxicity of IMX-101 and suggested that the three compounds acted independently. These results motivated this toxicogenomics study to discern toxicological mechanisms for these compounds at the molecular level.MethodsHere we used the soil nematode Caenorhabditis elegans, a well-characterized genomics model, as the test organism and a species-specific, transcriptome-wide 44 K-oligo probe microarray for gene expression analysis. In addition to the control treatment, C. elegans were exposed for 24 h to 6 concentrations of DNAN (1.95–62.5 ppm) or NQ (83–2667 ppm) or 5 concentrations of NTO (187–3000 ppm) with ten replicates per treatment. The nematodes were transferred to a clean environment after exposure. Reproduction endpoints (egg and larvae counts) were measured at three time points (i.e., 24-, 48- and 72-h). Gene expression profiling was performed immediately after 24-h exposure to each chemical at the lowest, medium and highest concentrations plus the control with four replicates per treatment.ResultsStatistical analyses indicated that chemical treatment did not significantly affect nematode reproduction but did induce 2175, 378, and 118 differentially expressed genes (DEGs) in NQ-, DNAN-, and NTO-treated nematodes, respectively. Bioinformatic analysis indicated that the three compounds shared both DEGs and DEG-mapped Reactome pathways. Gene set enrichment analysis further demonstrated that DNAN and NTO significantly altered 12 and 6 KEGG pathways, separately, with three pathways in common. NTO mainly affected carbohydrate, amino acid and xenobiotics metabolism while DNAN disrupted protein processing, ABC transporters and several signal transduction pathways. NQ-induced DEGs were mapped to a wide variety of metabolism, cell cycle, immune system and extracellular matrix organization pathways.ConclusionDespite the absence of significant effects on apical reproduction endpoints, DNAN, NTO and NQ caused significant alterations in gene expression and pathways at 1.95 ppm, 187 ppm and 83 ppm, respectively. This study provided supporting evidence that the three chemicals may exert independent toxicity by acting on distinct molecular targets and pathways.

Highlights

  • Ecotoxicological studies on the insensitive munitions formulation Insensitive munitions explosive 101 (IMX-101) and its components 2,4-dinitroanisole (DNAN), nitroguanidine (NQ) and nitrotriazolone (NTO) in various organisms showed that DNAN was the main contributor to the overall toxicity of IMX-101 and suggested that the three compounds acted independently

  • Worms of larval stage L3 were used in 24-h acute exposures to ensure that worms would not reach the egg-laying adult age within the time period of exposure, eliminating the confounding effect of RNA from laid or unlaid eggs being incorporated into genomic analysis

  • Acute toxicity of DNAN, NTO and NQ to C. elegans No statistically significant effects of NTO and NQ were observed on the survival of L3-stage worms in the acute 24-h exposures

Read more

Summary

Methods

We used the soil nematode Caenorhabditis elegans, a well-characterized genomics model, as the test organism and a species-specific, transcriptome-wide 44 K-oligo probe microarray for gene expression analysis. Gene expression profiling was performed immediately after 24-h exposure to each chemical at the lowest, medium and highest concentrations plus the control with four replicates per treatment. Worms were harvested by gentle rinsing with K Medium in late L3 stage which were determined by both length and age [27, 37]. Worms of larval stage L3 were used in 24-h acute exposures to ensure that worms would not reach the egg-laying adult age within the time period of exposure, eliminating the confounding effect of RNA from laid or unlaid eggs being incorporated into genomic analysis. After harvesting from agar plates, worms were spun at 1150×g for 2.5 min and re-suspended in a given volume of

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call