Abstract

Hundreds of epidemiological studies have shown that exposure to ambient particulate matter (PM) is associated with dose-dependent increases in morbidity and mortality. While early reports focused on PM less than 10 μm (PM10), numerous studies have since shown that the effects can occur with PM stratified into ultrafine (UF), fine (FI), and coarse (CO) size modes despite the fact that these materials differ significantly in both evolution and chemistry. Furthermore the chemical makeup of these different size fractions can vary tremendously depending on location, meteorology, and source profile. For this reason, high-volume three-stage particle impactors with the capacity to collect UF, FI, and CO particles were deployed to four different locations in the United States (Seattle, WA; Salt Lake City, UT; Sterling Forest and South Bronx, NY), and weekly samples were collected for 1 mo in each place. The particles were extracted, assayed for a standardized battery of chemical components, and instilled into mouse lungs (female BALB/c) at doses of 25 and 100 μg. Eighteen hours later animals were euthanized and parameters of injury and inflammation were monitored in the bronchoalveolar lavage fluid and plasma. Of the four locations, the South Bronx coarse fraction was the most potent sample in both pulmonary and systemic biomarkers, with a strong increase in lung inflammatory cells as well as elevated levels of creatine kinase in the plasma. These effects did not correlate with lipopolysaccharide (LPS) or total zinc or sulfate content, but were associated with total iron. Receptor source modeling on the PM2.5 samples showed that the South Bronx sample was heavily influenced by emissions from coal fired power plants (31%) and mobile sources (22%). Further studies will assess how source profiles correlate with the observed effects for all locations and size fractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.