Abstract

Comparative study of solid and liquid phase ablation on the same sample by time-resolved investigations is presented in this paper. Polyethylene-glycol (PEG) 1000 having relatively low melting point (35 °C) was used in our experiments. By varying the sample temperature in the 20–80 °C range we could study the ablation mechanism in both solid and liquid (below and above the melting point) state of matter. An ArF excimer laser (λ=193 nm, FWHM=20 ns) was used for ablation at 1.95 J/cm2 fluence. Ablation processes were observed by transmission fast photographic arrangement. It was demonstrated that plasma development and expansion (primer ablation, in 0–50 ns time range), formation and propagation parameters of shock wave and contact front did not depend on sample temperature and state of matter. The secondary material ejection (between 1–100 μs) showed a strong temperature dependence. Material ejection in the case of solid target occurred in the form of dense material cloud, and in the form of splashing for liquid (molten) sample. The ejection velocity of splashed jets depended on the sample temperature, significantly. This can be due to the change of molten PEG 1000 viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.