Abstract

Greater insights on the degradation pathways and intermediates formed during the oxidation of organics can be achieved by more suitable and compatible instrumentation. In our research, we sought to explore the relative advantages of the liquid chromatography coupled to a time of flight mass spectrometer (LCMS-TOF) technique for the comparative time-based degradation intermediates and pathways of 4-chlorophenol (4CP) and 4-nitrophenol (4NP). The ozonation of the analytes solution (100 mL of 2 x 10−3 M) was done in a sintered glass reactor, with an ozone dose of 0.14 mg min−1 (O2/O3 10 mL/min). The comparative oxidation results revealed that the 4-chloro- and 4-nitrocatechol pathways via hydroxylation were the major degradation route for 4CP and 4NP. Catechol intermediate was present as a primary breakdown product for the two analytes. Hydroquinone was observed as transient degradation intermediate for 4CP, but was absent for 4NP. Rather, a novel ozonation intermediate 2, 4-dinitrophenol was identified which was further oxidized to 3,6-dinitrocatechol. Several dimer products were identified in the oxidation processes, favored by alkaline conditions with more versatility shown by 4CP. The study provided a great insight into the ozone degradation intermediates and pathways, with some intermediates scarce in literature identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.