Abstract

Nanoliposomes are important carriers capable of packaging drugs for various delivery applications. Rhenium-188-radiolabeled liposome ((188)Re-liposome) has potential for radiotherapy and diagnostic imaging. To evaluate the targeting of (188)Re-liposome, biodistribution, microSPECT/CT, whole-body autoradiography (WBAR), and pharmacokinetics were performed in LS-174T human tumor-bearing mice. The comparative therapeutic efficacy of (188)Re-liposome and 5-fluorouracil (5-FU) was assessed according to inhibition of tumor growth and the survival ratio. The highest uptake of (188)Re-liposome in LS-174T tumor was found at 24 hours by biodistribution and microSPECT/CT imaging, showing a positive correlation for tumor targeting of (188)Re-liposome using the Pearson's correlation analysis (r=0.997). Pharmacokinetics of (188)Re-liposome showed the properties of high circulation time and high bioavailability (mean residence time [MRT]=18.8 hours, area under the curve [AUC]=1371%ID/g·h). For therapeutic efficacy, the tumor-bearing mice treated with (188)Re-liposome (80% maximum tolerated dose [MTD], 23.7 MBq) showed better tumor growth inhibition and longer survival time than those treated with 5-FU (80% MTD, 144 mg/kg). The median survival time for mice treated with (188)Re-liposome (58.5 days; p<0.05) was significantly better than those of 5-FU (48.25 days; p>0.05) and normal saline-treated mice (43.63 days). Dosimetry study revealed that the (188)Re-liposome did not lead to high absorbed doses in normal tissue, but did in small tumors. These results of imaging and biodistribution indicated the highly specific accumulation of tumor after intravenous (i.v.) injection of (188)Re-liposome. The therapeutic efficacy of radiotherapeutics of (188)Re-liposome have been confirmed in a LS-174T solid tumor animal model, which points to the potential benefit and promise of passive nanoliposome delivered radiotherapeutics for cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.