Abstract
Decarbonizing the current steel and power sectors through the development of the hydrogen direct-reduction iron ore–electric arc furnace route and the 100% hydrogen-fired gas turbine cycle is crucial. The current study focuses on three clusters of research works. The first cluster covers the investigation of the mass and energy balance of the route and the subsequent application of these values in experiments to optimize the reduction yield of iron ore. In the second cluster, the existing gas turbine unit was selected for the complete replacement of natural gas with hydrogen and for finding the most optimal mass and energy balance in the cycle through an Aspen HYSYS model. In addition, the chemical kinetics in the hydrogen combustion process were simulated using Ansys Chemkin Pro to research the emissions. In the last cluster, a comparative economic analysis was conducted to identify the levelized cost of production of the route and the levelized cost of electricity of the cycle. The findings in the economic analysis provided good insight into the details of the capital and operational expenditures of each industrial sector in understanding the impact of each kg of hydrogen consumed in the plants. These findings provide a good basis for future research on reducing the cost of hydrogen-based steel and power sectors. Moreover, the outcomes of this study can also assist ongoing, large-scale hydrogen and ammonia projects in Uzbekistan in terms of designing novel hydrogen-based industries with cost-effective solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.