Abstract

Hydrogen gas is a clean fuel with high calorific value. The current study is focused on production of hydrogen gas using Rhodobacter meghalophilus and Thermatoga maritima through anaerobic fermentation. Crude glycerol, by-product from biodiesel plant is used as carbon substrate due to its rich organic composition. Batch experiments have been carried out to study the impact of the inoculum size (1, 2 and 4 mL/L) and crude glycerol (5,10 and 15 mL/L) on the bacterial growth and hydrogen production rates by both the organisms. Inoculum size of 2 mL/L and crude glycerol of 15 mL/L of crude glycerol in medium for fermentation by R. meghalophilus, is found to produce 160 mL/L of gas with hydrogen production rate at 1.163×10-8 m3/kg.s and substrate conversion efficiency of 43.28%. Anaerobic fermentation by T. maritima is found to produce 120 mL/L of gas with 2 mL/L of inoculum and 10 mL/L of crude glycerol with hydrogen production rate of 9.4×10-9 m3/kg.s and substrate conversion efficiency of 23.88%. GC analysis of gas produced by T. maritima and R. meghalophilus shows 25% (v/v) and 19% (v/v) of hydrogen respectively. Thus, R. meghalophilus is found to acclimatize faster and exhibit better hydrogen production rate while T.maritima produces higher yield of hydrogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call