Abstract

Official air quality (AQ) stations are sporadically located in cities to monitor the anthropogenic pollutant levels. Consequently, their data cannot be used for further locations to estimate hidden changes in AQ and local emissions. Low-cost sensors (LCSs) of particulate matter (PM) in a network can help in solving this problem. However, the applicability of LCSs in terms of analytical performance requires careful evaluation. In this study, two types of pocket-size LCSs were tested at urban, suburban and background sites in Budapest, Hungary, to monitor PM1, PM2.5, PM10, and microclimatic parameters at high resolutions (1 s to 5 min). These devices utilize the method of laser irradiation and multi-angle light scattering on air-suspended particulates. A research-grade AQ monitor was applied as a reference. The LCSs showed acceptable accuracy for PM species in indoor/outdoor air even without calibration. Low PM readings (<10 μg/m3) were generally handicapped by higher bias, even between sensors of the same type. The relative humidity (RH) slightly affected the PM readings of LCSs at RHs higher than 85%, necessitating field calibration. The air quality index was calculated to classify the extent of air pollution and to make predictions for human health effects. The LCSs were useful for detecting peaks stemming from emissions of motor vehicular traffic and residential cooking/heating activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call