Abstract

Resistance to antimicrobial agents by pathogenic bacteria has emerged in recent years and is a major challenge for the health care industry. For developing a cheap broad-active agent that can be applicable against different pathogens, it is necessary to develop an alternative source for normal antibacterial agents. This paper mainly focuses on the combined action of green as well as citrate synthesized silver nanoparticles and β-penem antibiotics, which are β-lactam antibiotics with penem rings. These silver nanoparticles synergistic potential helps in the enhancement of antibacterial activity of broad spectrum antibiotics. The synergistic actions of citrate capped silver nanoparticles (Ag-NPs) were compared with that of garlic (Allium sativum) synthesized silver nanoparticles together with action of antibiotics, ampicillin and amoxyclav, and some of the pathogenic organisms showed an increase in the action of antibiotics.

Highlights

  • Over the last few years, the β-lactam classes of antibiotics were the most widely used and the most commonly prescribed drugs, which represent more than half of all the antibiotics used in medical field, especially for the treatment of infectious diseases

  • For biogenic synthesis of silver nanoparticles (Ag-NPs), garlic (Allium sativum) extract was used as the biological source for reduction and capping, which was purchased from local market, while in chemical synthesis sodium citrate was used as capping and reducing agent with silver nitrate (AgNO3) as precursor, which was from Merck (Mumbai, India)

  • When the reducing agents were mixed with aqueous solution of the silver nitrate, they started to convert the color from colourless to yellowish brown due to reduction of silver ion, which indicated the formation of silver nanoparticles [6]

Read more

Summary

Introduction

Over the last few years, the β-lactam classes of antibiotics were the most widely used and the most commonly prescribed drugs, which represent more than half of all the antibiotics used in medical field, especially for the treatment of infectious diseases. This is primarily because in general they work perfectly against bacteria, easy to deliver, and are of few side effects. Silver nanoparticles (Ag-NPs), which are well known for their antimicrobial activity, are studied intensively due to the growing bacterial resistance to antibiotics. ISRN Nanotechnology garlic (Allium sativum) and chemically synthesized silver nanoparticles (CS-AgNPs) using sodium citrate exhibit improved bactericidal activities, and more interestingly, a synergistic activity becomes operational when both of the components act together

Materials and Methods
Results and Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.