Abstract

Standard ecotoxicological test procedures use only active forms of aquatic plants. The potential effects of toxicants on vegetative propagules, which play an important role in the survival of several aquatic plant species, is not well understood. Because turion-like resting propagules overwinter on the water bottom in temperate regions, they could be exposed to contaminants for longer periods than active plants. Due to its turion producing capability, giant duckweed (Spirodela polyrhiza) is widely used in studying morphogenesis, dormancy, and activation mechanisms in plants. It is also suitable for ecotoxicological purposes. The present work aims to compare the growth inhibition sensitivity of active (normal frond) and overwintering (turion) forms of S. polyrhiza to concentrations of nickel (Ni), cadmium (Cd) and hexavalent chromium (Cr) ranging from 0 to 100mgL−1. The results indicated that in general, resting turions have higher heavy metal tolerance than active fronds. Cd proved to be the most toxic heavy metal to S. polyrhiza active frond cultures because it induced rapid turion formation. In contrast, the toxicity of Ni and Cr were found to be similar but lower than the effects of Cd. Cr treatments up to 10mgL−1 did not result in any future negative effects on turion activation. Turions did not survive heavy metal treatments at higher concentrations of Cr. Cd and Ni treatments affected both the floating-up and germination of turions but did not significantly affect the vigor of sprouts. Higher concentrations (of 100mgL−1) Cd completely inhibited germination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.