Abstract

The impact of the encapsulation technology on the oxidative stability of fish-oil-loaded capsules was investigated. The capsules (ca. 13 wt% oil load) were produced via monoaxial or coaxial electrospraying and spray-drying using low molecular weight carbohydrates as encapsulating agents (e.g., glucose syrup or maltodextrin). The use of spray-drying technology resulted in larger capsules with higher encapsulation efficiency (EE > 84%), whilst the use of electrospraying produced encapsulates in the sub-micron scale with poorer retention properties (EE < 72%). The coaxially electrosprayed capsules had the lowest EE values (EE = 53-59%), resulting in the lowest oxidative stability, although the lipid oxidation was significantly reduced by increasing the content of pullulan in the shell solution. The emulsion-based encapsulates (spray-dried and monoaxially electrosprayed capsules) presented high oxidative stability during storage, as confirmed by the low concentration of selected volatiles (e.g., (E,E)-2,4-heptadienal). Nonetheless, the monoaxially electrosprayed capsules were the most oxidized after production due to the emulsification process and the longer processing time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call