Abstract

ABSTRACT This study compares the microstructures and hardness of an AlSi10.6CuMg alloy obtained by sand casting and high pressure die casting (HPDC). The results show that the morphology of HPDC dendrites was not uniformly distributed as in sand casting. HPDC refines the morphology of intermetallics and produces a modification of eutectic silicon. Chinese-script is the dominant iron intermetallic in sand casting, while primary polyhedral and secondary proeutectic particles are dominant in HPDC. The results of the X-ray diffraction show the presence of high residual stresses in the HPDC. Deep etching for HPDC samples reveals θ-Al2Cu phases in very thin compact dendrites. No evidence of twin plane re-entrant edge assistance was found in the growth of primary silicon. The primary silicon plate-like becomes unstable in HPDC, resulting in smooth and rounded outer surfaces. Hardness of HPDC alloy was about 11% higher than that of sand casting alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call