Abstract

Surface modification of lubricating coatings on biomedical devices is a pivotal strategy to improve the overall performance and clinical efficacy, significantly reducing friction between devices and human tissues and mitigating tissue damage during intervention and long-term implantation. Recently, various hydrophilic polymeric materials have been used for achieving surface functionalization, endowing the biomedical device with excellent superlubrication performance. N-Vinylpyrrolidone (NVP) and 2-methacryloyloxyethyl phosphorylcholine (MPC) are two typical representatives of nonionic and zwitterionic materials. However, there is still a research gap in a comparative study of the lubrication mechanisms and properties between them. In this study, a bioinspired and dopamine-assisted codeposition technique was used to fabricate biomimetic hydrophilic coatings, including P(DMA-NVP) and P(DMA-MPC), on polyurethane. To achieve a thorough comparative analysis of the self-adhesive coating performance, 3 M ratios of the copolymers were synthesized and comprehensive material evaluations were conducted. Additionally, surface morphology, hydrophilicity, and lubrication at both the microscale and macroscale were performed. It was found that both hydrophilic coatings exhibited good stability. The P(DMA-MPC) coating, due to the ability to attract and bind a large number of water molecules, demonstrated superior lubrication effects compared to the P(DMA-NVP) coating. The study provides an in-depth understanding of the lubrication behavior of the self-adhesive coatings to enhance the functionality and application in biomedical engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call