Abstract

Human serum albumin (HSA) principally tasks as a transport carrier for a vast variety of natural compounds and pharmaceutical drugs. In the present study, two structurally related binuclear Pt (II) complexes containing cis, cis-[Me2Pt (μ-NN) (μ-dppm) PtMe2] (1), and cis, cis-[Me2Pt(μ-NN)(μ dppm) Pt((CH2)4)] (2) in which NN=phthalazine and dppm=bis (diphenylphosphino) methane were used to investigate their interaction with HSA, using UV–Vis absorption spectroscopy, fluorescence, circular dichroism and molecular dynamic analyses. The spectroscopic results suggest that upon binding to HSA, the binuclear Pt (II) complexes could effectively induce structural alteration of this protein. These complexes can bind to HSA with the binding affinities of the following order: complex 2>complex 1. Moreover, the thermodynamic parameters of binding between these complexes and HSA suggested the existence of entropy-driven spontaneous interaction, which mostly dominated with the hydrophobic forces. The ANS fluorescence results also indicated that two binuclear Pt (II) complexes were competing for the binding to the hydrophobic regions on HSA. In addition, competitive displacement assay and docking simulation study revealed that complexes 1 and 2 bind to the drug binding sites II and I on HSA, respectively. Furthermore, complex 2, with the higher binding affinity for HSA, shows more denaturing effect on this protein. Considering the protein structural damages in the pathway of harmful side effects of platinum drugs, complex 1 with the moderate binding affinity and low denaturing effect might be of high significance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.