Abstract

The impact of three commercially available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide, titanium dioxide, and iron oxide nanoparticles. A rapid small-scale column test (RSSCT) was assessed for its ability to predict TCE adsorption in pilot-scale GAC in the presence and absence of NPs. Zeta potential of the three NPs and the GAC were measured. Particle size distribution of the NP dispersions was analyzed as a function of time. The surface area and the pore size distribution of the virgin and the exhausted GAC were obtained along with transmission electron microscopy and Fourier transform infrared spectroscopy analysis. The effect of NPs was found to be a function of their zeta potential, concentration, and particle size distribution. Due to their electrical charge, NPs attached to the GAC and blocked the pores and thus reduced the access to the internal pore structure. However, due to the fast adsorption kinetics of TCE, no effect from the three NPs was observed in the isotherm and kinetic studies. The RSSCT, on the other hand, accurately predicted the pilot-column TCE breakthrough in the presence of NPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call