Abstract
The present work aims to characterize the surface features of solid and porous (sintered and SHS) TiNi-based alloys subjected to oxidation at 1000 °C in static air in the context of their resistance to high-temperature atmospheric attack. Clear differences between the intact and oxidated surfaces indicate the complexity of a chemicothermal diffusion process evolving therein. Microscopic and XRD studies showed that the dominant superficial constituent in all oxidated samples is titanium dioxide in the rutile modification. The phase and structural properties of the surface layers suggest that porous sintered and solid alloys are most susceptible to high-temperature corrosion due to bare reactive surfaces, which negatively affects their overall biocompatibility. Surface morphology analysis revealed microporous and loose superficial layers having a thickness of 8–10 and 50–60 μm, respectively in the solid and sintered alloy. Also, these alloys showed a high content of leaching NiO and free Ni within the surface layer. Conversely, a thin (0.5–0.6 μm), dense, and multifarious layer of oxycarbonitrides Ti4Ni2(O,N,C) concealing the porous SHS-TiNi matrix inhibits the negative effect of high-temperature oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.