Abstract
This study presents the sizing calculation and the FEM analysis of the propeller shaft for three different operating modes. The propeller shaft has the role of supporting the engine and transmitting its rotating motion and is the most requested element in the structure of the shaft line. In scenario 1, a "fixed support" type constraint is applied at one end and the maximum torque given by the motor at the other end is applied to lock the propeller. Than to simulate scenario 2, apply the maximum thrust force to the propeller at one end, and the "fixed support" constraint will be inserted at the end of the engine. And the 3 th scenario was the operating of propulsion system in normal mode. Comparing the results from the simulation of the three scenarios, it is observed that the maximum values recorded for displacement, equivalent elastic strain and equivalent stresses were recorded at the engine operation under normal conditions. In conclusion, although the scenarios were a bit exaggerated, the propeller shaft withstood the efforts, falling within the limit of elasticity. This demonstrates that the calculation method of propeller shafts is correct, and safe, as long as their size is not oversized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Modern Manufacturing Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.