Abstract

In deep penetration laser welding, the behavior of the keyhole has an important influence on the welding quality. As it is difficult to directly observe the keyhole and detect the pressure inside the keyhole during metal laser welding, theoretical analysis and numerical simulation methods are commonly used methods in studying keyhole behavior. However, these methods cannot provide direct real information on keyhole behavior. In this paper, a method of analogy welding is proposed, in which high speed gas is used to blow the liquid to generate the keyhole. Relevant process experiments were conducted to explore keyhole behavior in analogy welding and real deep penetration laser welding. The pressure balance of the keyhole, both in analogy welding and real deep penetration laser welding, were analyzed. The laws obtained in analogy welding and real deep penetration laser welding are similar, which indicates that studying keyhole formation and the maintenance principle using the analogy welding method proposed in this paper may be helpful for deep understanding of the keyhole formation and maintenance mechanisms in real deep penetration laser welding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call