Abstract

To gain additional insight into how a birdsong is learned, we compared the songs of Bengalese finch males that were deafened early in development or raised without tutors to control finches that learned songs from adult models. Fewer note types and a more variable number of notes per bout were observed in untutored male songs, and no audible songs were detected in deafened males. We then investigated the ultrastructural, immunohistological, and electrophysiological correlates of the outcomes of song learning within the robust nucleus of the archopallium (RA), a forebrain nucleus for song production. In comparison to control birds, untutored and deafened birds had more synapses per unit volume, fewer vesicles per synapse, longer postsynaptic densities, and a lower proportion of perforated synapses, which suggest lower activity or decreased efficiency of synaptic transmission within the RA of the treated birds. For anesthetized birds, neurons within the RA of untutored and deafened males had lower spontaneous firing rates, fewer and shorter bursts, and higher coefficient of variation of the instantaneous firing rate than the normally reared males. Compared with controls, the untutored and deafened males had higher staining intensities within the RA of GABA and the GABAA receptor, less staining of tyrosine hydroxylase and no difference in the staining of NMDA receptors. Thus, both the ultrastructural and immunohistochemical results could explain for the stronger electrophysiological activities in normally reared birds. Because RA is involved in generating the motor commands, these data might account for the deficits in birds with abnormal song learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call