Abstract

Numerical estimation for higher order eigenvalue problems are promising and has accomplished significant importance, mainly due to existence of higher order derivatives and boundary conditions relating to higher order derivatives of the unknown functions. In this article, we perform a numerical study of linear hydrodynamic stability of a fluid motion caused by an erratic gravity field. We employ two methods, collocation and spectral collocation based on Bernstein and Legendre polynomials to solve the linear hydrodynamic stability problems and Benard type convection problems. In order to handle boundary conditions, our techniques state all the unknown coefficients of boundary conditions derivatives in terms of known co-efficient. The schemes have been carried out to several test problems to establish the efficiency of the two methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call