Abstract

Abstract 2017-271 In recent years, diluted bitumen (or dilbit) has become an important source of hydrocarbon-based fuel. While information on the degradation of crude oils has been well researched, dilbit degradation has been studied at a much lesser extent. The objective of this study was to compare biodegradation of dilbit with a conventional crude oil (CCO) under various conditions. Two different microcosm experiments were set up, one containing a mixed culture acclimated to dilbit (Kalamazoo River Enrichment, KRC) and the other having a mixed culture enriched on soil contaminated with hydrocarbons (Anderson Ferry Enrichment, AFC). The microcosms were run for 60 d at 25 °C and for 72 days at 5 °C in flasks containing sterile Bushnell Hass broth and naturally dispersed oil. Each flask was inoculated with the KRC and AFC mixed cultures, and rotated on an orbital shaker (200 rpm) at the above stated temperatures. On each sampling day, triplicates were sacrificed to determine the residual hydrocarbon concentration. Additionally, some samples were used to determine the bacterial composition using 16S rRNA gene sequencing analysis. Hydrocarbon analysis (alkanes and PAHs) was performed by gas chromatography/mass spectrometry (GC/MS/MS). Higher degradation rates were achieved at 25 °C as compared to 5 °C. All the enrichments metabolized CCO as well dilbit, but the nature and extent of the degradation was distinct. KRC meso culture was the most effective among all, as it completely removed alkanes and most of the PAHs. AFC enrichment performed differently at the two temperatures; an acclimation period (8 d) was observed at 5 °C while there was no lag at 25 °C. KRC cryo culture as well as AFC culture at both temperatures degraded alkanes completely while they were not able to metabolize heavier fractions of the oil (C2–4 homologues of 3- and 4-ring compounds). All cultures showed the presence of diverse oil degrading bacteria and the differences in their compositions affected the biodegradation. Although dilbit was biodegraded, for all the treatments except AFC at 5 °C, the rate of degradation and the extent of degradation was greater for CCO owing to the higher concentrations of lighter hydrocarbons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call