Abstract

The sorption isotherms of polychlorinated biphenyls (PCBs) on carbons (coal based activated carbon named AC and hardwood derived biochar named BC) and natural organic matter (NOM) loaded carbons were examined and carbon-water partition coefficients (KC-W-PCB) were calculated. The purpose was to accurately predict the effectiveness of in-situ carbon treatments on the sediment impacted with hydrophobic organic chemicals (HOCs). For 1 month sorption, AC KC-W-PCB values were significantly higher than BC, corresponding to the much larger surface area (particularly in mesopores) for AC. BC KC-W-PCB values were correlated with PCB total surface area (TSA) and octanol-water partition coefficient (logKow). After loading with NOM, AC adsorption to PCBs strongly reduced and the fitted Freundlich exponents (n) decreased with increasing NOM level. However, NOM loading slightly impacted BC sorption and exhibited an opposite effect on BC n values. It is illustrated that the sorption mechanisms are different between AC and BC thereby the influences of NOM on sorption characteristics differ vastly. As the sorption time increased from 1 month to 6 months, an increase is observed in BC sorption extent but simultaneously NOM reduction effect on BC sorption increases, implying that more accurately evaluating BC application as an in-situ sorbent amendment for HOC impacted sediment need further investigation. On the contrary, AC adsorption attenuation caused by NOM coating greatly decreases over time, encouraging AC application as a sediment amendment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call