Abstract

A comparative study on pharmacokinetics of four long-acting enrofloxacin injectable formulations was investigated in 36 healthy pigs after intramuscular injection according to the recommended single dose @ 2.5 mg/kg body weight. The drug concentrations in the plasma were computed using high-performance liquid chromatography (HPLC) with fluorescence detection. WinNonLin5.2.1 software was used to analyze the experimental data and compared it under one-way ANOVA using SPSS software with a 95% confidence interval (CI). The main pharmacokinetic parameters, that is, the maximum plasma concentrations (Cmax), the time to maximum concentration (Tmax), area under the time curve concentration (AUCall) and Terminal half-life (T1/2) were 733.84 ± 129.87, 917.00 ± 240.13, 694.84 ± 163.49, 621.98 ± 227.25 ng/ml, 2.19 ± 0.0.66, 1.50 ± 0.37, 2.89 ± 0.24, 0.34 ± 0.13 h, 7754.43 ± 2887.16, 8084.11 ± 1543.98, 7369.42 ± 2334.99, 4194.10 ± 1186.62 ng h/ml, 10.48 ± 2.72, 10.37 ± 2.38, 10.20 ± 2.81, and 10.61 ± 0.86 h for 10% enrofloxacin (Alkali), 20% enrofloxacin (Acidic), Yangkang and control drug Nuokang® respectively. There were significant differences among Cmax, Tmax, and AUCall of three formulations compare with that of the reference formulation. No significant differences were observed among the T1/2 for tested formulations compare with the reference formulation. The pharmacokinetic parameters showed that the tested formulations were somewhat better compared to the reference one. The calculated PK/PD indices were effective for bacteria such as Actinobacillus pleuropneumoniae and Pasteurella multocida with values higher than the cut-off points (Cmax/MIC90≥10–12 and AUC/MIC90 ≥ 125). However, they were not effective against bacteria like Haemophilus parasuis, Streptococcus suis, E. coli, and Bordetella bronchiseptica where lower values were obtained.

Highlights

  • Fluoroquinolones are essential therapeutic agents used for the treatment of animal infection [1] against a wide variety of microorganisms, including Mycoplasma species [2]

  • Our study aimed to investigate the pharmacokinetic profiles of four long-acting ENR injectable formulations in pigs after intramuscular administration at a single dose of 2.5 mg per kg body weight

  • The chromatogram (Figure 1) shows (A) control blank plasma; (B) ENR in pig plasma measured at 7.5 min; (C) ciprofloxacin in standard plasma measured at 5.8 min, and (D) ENR and ciprofloxacin in standard plasma measured at 7.5 min and 5.7 min respectively which shows the suggested method for the detection of ENR and its active metabolites CIP is specific and accurate

Read more

Summary

Introduction

Fluoroquinolones are essential therapeutic agents used for the treatment of animal infection [1] against a wide variety of microorganisms, including Mycoplasma species [2]. Enrofloxacin (ENR) is a third-generation fluoroquinolone having broad-spectrum antimicrobial activity used in the veterinary field [3] that enhances the possibility of selecting resisting bacteria [4]. They are widely used in farm animals because of their antimicrobial activity against a wide range of pathogens, favorable pharmacokinetic properties, and little toxicity [5]. Enrofloxacin is signified for the treatment of respiratory and alimentary tract infections [8]. Enrofloxacin is accepted for the treatment and control of swine respiratory disease caused by Pasteurella multocida, Streptococcus suis, Actinobacillus pleuropneumoniae, and Haemophilus parasuis [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call