Abstract
This chapter introduces three new multi-objective genetic algorithms (MOGAs) for minimum distributions of both actuators and sensors within seismically excited large-scale civil structures such that the structural responses are also minimized. The first MOGA is developed through the integration of Implicit Redundant Representation (IRR), Genetic Algorithm (GA), and Non-dominated sorting GA 2 (NSGA2): NS2-IRR GA. The second one is proposed by combining the best features of both IRR GA and Strength Pareto Evolutionary Algorithm (SPEA2): SP2-IRR GA. Lastly, Gene Manipulation GA (GMGA) is developed based on novel recombination and mutation mechanism. To demonstrate the effectiveness of the proposed three algorithms, two full-scale twenty-story buildings under seismic excitations are investigated. The performances of the three new algorithms are compared with the ones of the ASCE benchmark control system while the uncontrolled structural responses are used as a baseline. It is shown that the performances of the proposed algorithms are slightly better than those of the benchmark control system. In addition, GMGA outperforms the other genetic algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.