Abstract

Based on an equivalent single-conductor (ESC) model of multilayer graphene nanoribbon (MLGNR) interconnects with side contacts, comparative study on their distributed parameters and transmission characteristics is performed in this paper. It is found that the number of conducting channels of a metallic MLGNR interconnect is the linear function of its width and Fermi energy, which can be described by an analytical equation. Its equivalent inductance and capacitance in the ESC model can also be characterized by a set of closed-form equations. Furthermore, according to the ITRS projection, transmission performance of the MLGNR interconnects with different contacts are predicted and compared with their Cu and carbon nanotube counterparts at different technology nodes. Also, some numerical results prove that MLGNR interconnects can provide better performance than Cu wires in particular at intermediate level. Even with the maximum crosstalk impacts considered, the advantage of MLGNR interconnects over Cu wires can still be kept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call