Abstract

In this work, we have comparatively investigated the effects of the GaN, AlGaN, and AlN low-temperature buffer layers (BL) on the crystal quality of a-plane GaN thin films grown on r-plane sapphire substrates. Scanning electron microscopy images of the a-plane GaN epilayers show that using an AlGaN BL can significantly reduce the density of surface pits. The full-width at half-maximum values of the $$ (11\overline{2} 0) $$ x-ray rocking curve (XRC) are 0.19°, 0.36°, and 0.48° for the films grown using Al0.15Ga0.85N, GaN, and AlN BLs, respectively, indicating that an AlGaN BL can effectively reduce the mosaicity of the films. Room-temperature photoluminescence shows that the AlGaN BL results in lower impurity incorporation in the subsequent a-plane GaN films, as compared with the case of GaN and AlN BLs. The higher crystal quality of a-plane GaN films produced by the Al0.15Ga0.85N BL could be due to improvement of BL quality by reducing the lattice mismatch between the BL and r-sapphire substrates, while still keeping the lattice mismatch between the BL and epitaxial a-plane GaN films relatively small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call