Abstract

This study systematically investigates the influence of the composite addition of Ce, La, and Ca elements on the microstructure evolution and mechanical properties of Mg-3Zn-1Mn/Sn (wt.%) alloys. It indicates that the strength of Mg-Zn-Mn series alloys is superior to that of Mg-Zn-Sn series alloys, due to the stronger restriction of nanosized Mn particles on the recrystallization process and grain growth compared with Mg2Sn phases. The addition of the Ca-La-Ce elements significantly enhances the strength of the Mg-3Zn-1Sn alloy (YS increased by approximately 92.5%, UTS increased by approximately 29.2%, and EL decreased by nearly 52.2%), while for the Mg-3Zn-1Mn alloy, a balanced effect on both the strength and performance can be achieved. This difference mainly lies in the more pronounced refined effect on the grain size and the formation of a bimodal grain structure with strip-like un-DRXed grains and surrounding fine DRXed grains for the Mg-3Zn-1Sn alloy. In contrast, the addition of the Ca-La-Ce elements has a less obvious hindrance on the recrystallization process in the Mg-Zn-Mn series alloy, while significantly weakening the extrusion texture while refining the grains. Through in-depth characterization and experimental analysis, it is found that Sn and Ca can promote the formation of brittle and fine secondary phases. A nanoscale Sn phase (Mg2Sn phase) is more likely to accumulate at the grain boundaries, and the size of the nanoscale Ca2Mg6Zn3 in Mg-Zn-Mn series alloys is finer and more dispersed than that in Mg-Zn-Sn series alloys, thus strongly hindering recrystallization and refining the recrystallized structure of the alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.