Abstract

Energy extraction from the deep subsurface requires engineering using a working fluid circulation in well doublet. This study developed a field-scale hydro-thermal model to examine the heat extraction potential from Soultz-sous-Forêts with CO2 and water as the working fluid. A better understanding of the heat extraction mechanism is established by considering the reservoir response and the wellbore heat exchange. Sensitivity analyses are performed for different injection temperatures and flow rates for 50 years. Results show that the wellbore effect is multiple times higher than the reservoir response to the production temperature. Furthermore, lowering the injection temperature eventuates to a smaller temperature reduction at the subsurface, enhancing the overall heat extraction potential with a minor impact on thermal breakthrough. The cold region developed around the injection wellbore may affect the production fluid temperature due to its proximity to the production wellbore near the top of the reservoir. To reach higher heat extraction efficiency, it is essential to use sufficient wellbore spacing. CO2 can be used as working fluid for over 50 years as it does not show significant thermal breakthrough and temperature plume evolution in the reservoir under studied conditions. CO2 shows lower temperature reduction for all injection rates and temperatures for 50 years of operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.