Abstract

Mulberry silk fibroin is being used as biomaterial for tissue engineering applications. In the present work, comparisons are made between mulberry and eri silk fibroin scaffolds prepared by electrospinning method. The scaffolds are treated with ethanol to improve their dimensional stability, and the physical and chemical properties of the scaffolds are assessed using thermogravimetric analyzer (TGA), differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffractometry. The FTIR spectra confirm the structural change of silk fibroin from α-helical to β-sheet structure when mulberry and eri silk scaffolds are treated with ethanol. The thermal stability of the eri silk scaffold is found to be better than that of mulberry silk. Ethanol-treated eri silk displays higher tensile stress than the ethanol-treated mulberry silk. The hemolysis percentages of eri silk and mulberry silk scaffolds are found to be 1 and 3 %, respectively. While the platelet adhesion on eri silk fibroin scaffold is found to be lower than that of mulberry silk fibroin scaffold, the cell attachment, binding and spreading of L6 fibroblast cells on the eri silk scaffold are better than those on the mulberry silk fibroin, and the cell viability is found to be better on eri silk fibroin scaffold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call