Abstract

Magnetic field plays an important role in numerous fields such as biological, chemical, mechanical and medical research. In clinical and medical research the high field magnets are extremely important to create 3D images of anatomical and diagnostic importance from nuclear magnetic resonance signals. In view of these applications, the purpose of present work is to explore the impact of an external magnetic field on the viscoelastic fluid flow in the existence of electroosmosis, porous medium and slip boundary conditions. The governing equation is modified under the suitable dimensionless quantities. The resulting non-dimensional differential equation is evaluated by analytical as well as numerical (finite difference and cubic B-spline) methods. The convergence analysis is also presented for the numerical methods. The variations of sundry parameters on velocity, volume flow rate and skin friction are presented through graphical representations. The current analysis depicts that, the higher velocities are noticed in viscoelastic fluid as compared with Newtonian fluid. The velocity enhances with rising of slip and Darcy parameters. Volume flow rate rises with the slip and viscoelastic parameters. Skin friction is a decreasing function of zeta potential, Darcy number and Hall current parameter. The limiting solutions can be captured for the Newtonian fluid model by setting the viscoelastic parameter to zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.