Abstract

Numerical based assessment of traditional and nanostructured yttria stabilized zirconia (YSZ) thermal barrier coating systems (TBCs) has been carried out with varying thickness of thermally grown oxide (TGO). Radial, axial and shear stresses are determined for both coatings and are presented in comparison with few novel and interesting results. Elastic strain energy for TGO failure assessment is determined from calculated stress within TGO for varying thickness. Radial stresses at TGO/bond coat interface and maximum axial stresses in nanostructured zirconia coatings are found to be lower than in traditional YSZ up to a critical TGO thickness of 6 –7μm, after which stresses in nanostructured zirconia coatings increase considerably. However, radial compressive stresses in nanostructured TBCs are lower in all TGO thickness cases and shear stresses are slightly higher with relatively more prominent difference at high oxide thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call