Abstract

Desorption behavior of β-lactoglobulin (β-Lg), one of the main constituents of fouling deposits in milk processing, from stainless steel surfaces during caustic and enzymatic cleanings was studied by using a glass column packed with stainless steel particles fouled with β-Lg. Both in caustic and enzymatic cleanings, the amount of β-Lg remaining on the stainless steel particles decreased according to first-order kinetics at the initial stage, and gradually reached a constant value. The desorption rate constant at the initial stage and the residual amount of β-Lg after 2h of cleaning were evaluated as the measures of cleaning efficiency under various conditions. In caustic cleaning, these two values were strongly affected by the concentration of NaOH. The initial desorption rate increased with increasing flow rate of the caustic solution, suggesting a mass transfer effect. In enzymatic cleaning, the maximum desorption rate constant was obtained at around the optimum pH for the enzyme reaction. The temperature dependence of the initial desorption rate constant was stronger in caustic cleaning than in enzymatic cleaning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call