Abstract

Cytoplasmic male sterile system (CMS) is one of the important methods for the utilization of heterosisin Brassica napus. The involvement of long non-coding RNAs (lncRNAs) in anther and pollen development in B.napus has been recognized, but there is little data on the involvement of lncRNAs in pollen abortion in different types of rapeseed CMS. The present study compared the cytological, physiological and biochemical characteristics of Nsa CMS (1258A) and Pol CMS (P5A) during pollen abortion, and high-throughput sequencing of flower buds of different sizes before and after pollen abortion. The results showed that insufficient energy supply was an important physiological basis for 1258A and P5A pollen abortion, and 1258A had excessive ROS (reactive oxygen species) accumulation in the stage of pollen abortion. Functional analysis showed that Starch and sucrose metabolism and Sulfur metabolism were significantly enriched before and after pollen abortion in 1258A and P5A, and a large number of genes were down-regulated. In 1258A, 227 lncRNAs had cis-targeting regulation, and 240 cis-target genes of the lncRNAs were identified. In P5A, 116 lncRNAs had cis-targeting regulation, and 101 cis-target genes of the lncRNAs were identified. There were five lncRNAs cis-target genes in 1258A and P5A during pollen abortion, and LOC106445716 encodes β-D-glucopyranosyl abscisate β-glucosidase and could regulate pollen abortion. Taken together, this study, provides a new perspective for lncRNAs to participate in the regulation of Nsa CMS and Pol CMS pollen abortion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call