Abstract

Xylan is the second most abundant polysaccharide and the predominant hemicellulose component of soda bagasse pulp. The present endeavor focuses on increasing the value addition to underutilized agro-industrial residue such as bagasse. For this purpose, xylan was isolated by two conventional alkali extraction methods i.e. NaOH and KOH. The recovery rate and sugar composition of different reaction times and alkali consumptions were monitored with advanced method such as High Performance Liquid Chromatography (HPLC). The Fourier Transform Infrared Spectroscopy (FTIR) and Wide Angle X-ray spectroscopy (WAXS) were respectively employed to characterize the functional groups and Crystallinity Index (CrI) changes during the extraction process. It was explored that highest xylan recovery rates were obtained with 6% of NaOH at 120 min and 6% KOH at 45 min. The xylan morphology via WAXS was found that its structure to be amorphous. HPLC results also showed KOH had higher effectiveness than NaOH in terms of extracted xylan purity. Highest XGRs (Xylose to Glucose Ratios) were also achieved by KOH processes. Hence, this study contributes to the adequate utilization of agricultural residues, with promising potential for applications in the production of certain novel materials and chemical conversion industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.