Abstract

Vermicomposting is the process of composting using worms and is applied in waste management to produce high-quality organic fertilizer. Garden waste (GW) is often mixed with other raw materials for vermicomposting. In the present study, the feasibility of vermicomposting using only GW was investigated in comparison with cow dung (CD). The total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents and the electrical conductivity increased, while total organic carbon (TOC) and the C/N ratio decreased in both substrates after vermicomposting. The nutrient content (TN, TP, and TK) of the GW vermicompost was promoted less than that in CD. Scanning electron microscopy images and specific surface area analysis showed that the vermicompost was strongly disaggregated and became more compacted and fragmented compared with the raw substrates. No mortality of earthworms was observed in GW; however, the earthworms had a higher mean body weight and reproduction rate in CD than that in GW. There were higher bacterial community richness and diversity in the vermicompost than that in the raw materials, and the dominant phylum species were Proteobacteria, Actinobacteria, and Bacteroidetes. Redundancy analysis demonstrated that TN, C/N ratio, and TOC play an important role in bacterial community dynamics. These data indicate that vermicomposting is a robust process that is suitable for the management of GW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.