Abstract

The traveling salesman problem (TSP) is one of the most often-used NP-hard problems in computer science to study the effectiveness of computing models and hardware platforms. In this regard, it is also heavily used as a vehicle to study the feasibility of the quantum computing paradigm for this class of problems. In this paper, we tackle the TSP using the quantum approximate optimization algorithm (QAOA) approach by formulating it as an optimization problem. By adopting an improved qubit encoding strategy and a layer-wise learning optimization protocol, we present numerical results obtained from the gate-based digital quantum simulator, specifically targeting TSP instances with 3, 4, and 5 cities. We focus on the evaluations of three distinctive QAOA mixer designs, considering their performances in terms of numerical accuracy and optimization cost. Notably, we find that a well-balanced QAOA mixer design exhibits more promising potential for gate-based simulators and realistic quantum devices in the long run, an observation further supported by our noise model simulations. Furthermore, we investigate the sensitivity of the simulations to the TSP graph. Overall, our simulation results show that the digital quantum simulation of problem-inspired ansatz is a successful candidate for finding optimal TSP solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.