Abstract
Vaneless and vaned diffusers in a transonic centrifugal compressor with the refrigerant HFC-134a were studied experimentally and numerically. The compressor was tested on a closed-loop stand instrumented to obtain both overall performance data and local flow field quantities. In numerical studies, the thermodynamic and transport properties of the refrigerant gas were modeled by the Martin-Hou equation of state and power laws, respectively. To include the interaction of the compressor components in these analyses, a unified three-dimensional numerical model was built for the complete compressor stage. The flow field was calculated with a Navier-Stokes solver using the k-ε turbulent model. The impact of the different diffusers on both local flow field and overall performance is analyzed comparatively for each component. The experimental and numerical results agree well. The correlation between the overall compressor performance and local flow field quantities is defined. The methodology developed and data obtained in these studies can be applied to centrifugal compressor design and optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.