Abstract

PurposeThe purpose of this study was to compare machining performance between chemical vapor deposition (CVD)- and physical vapor deposition (PVD)-coated cutting tools to obtain the optimal cutting parameters based on different types of tools for machining titanium alloy (Ti-6Al-4V).Design/methodology/approachThe design of the experiment was constructed using the response surface methodology (RSM) with the Box–Behnken method. Two types of round-shaped tungsten carbide inserts were used in this experiment, namely, PVD TiAlN/AlCrN insert tool and CVD TiCN/Al2O3 insert tool. The titanium alloy (Ti-6Al-4V) material was used throughout this experiment. The tool wear and microstructure analysis were measured using a tool maker microscope, an optical microscope and a scanning electron machine.FindingsThe PVD TiAlN/AlCrN insert tool produces the lowest tool wear that significantly prolongs the cutting tool life compared to the CVD TiCN/Al2O3 insert tool. In addition, depth of cut was the main factor affecting the tool life, followed by cutting speed and feed rate.Originality/valueThis study was conducted to compare machining performance between CVD- and PVD-coated cutting tools to obtain the optimal cutting parameters based on different types of tools for machining titanium alloy (Ti-6Al-4V). In addition, the information presented in this paper helps reduce the manufacturing cost and setup time for machining titanium alloy. Finally, tool wear comparison between PVD- and CVD-coated titanium alloys was also presented for future improvement for tool manufacturing application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call