Abstract
An enduring impediment in the photocatalysis domain is the rapid recombination of photoinduced charge carriers. One viable strategy to realize efficient separation of photoinduced charge carriers is to design core/shell nanostructures. In this context, our work explains the substantial separation of photocarriers and enhanced light harvesting in TiO2 nanostructures following the realization of core/shell geometry with CuS. We demonstrate the design of the TiO2/CuS core/shell nanostructures, utilizing a surface-functionalizing agent, 3-mercaptopropionic acid, and offering commendable visible light driven photocatalytic performance for degradation of virulent organic pollutants of dye wastewater, like methylene blue (MB). To validate the merits of the TiO2/CuS core/shell nanostructures, we have also designed TiO2/CuS composite nanostructures under similar conditions (without utilizing the surface-functionalizing agent, 3-mercaptopropionic acid). Successful realization of TiO2/CuS nanostructures (core/shell ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.