Abstract

Teicoplanin (T) is a macrocyclic glycopeptide that is highly effective as a chiral selector for enantiomeric separations. In this study, we used three teicoplanin-based chiral stationary phases (CSPs) – native teicoplanin, teicoplanin aglycon (TAG) and recently synthesized methylated teicoplanin aglycon (MTAG). In order to examine the importance of various interaction types in the chiral recognition mechanism the three related CSPs were evaluated and compared using a linear free energy relationship (LFER). The capacity factors of 19 widely different solutes, with known solvation parameters, were determined on each of the columns under the same mobile phase conditions used for the chiral separations. The regression coefficients obtained revealed the magnitude of the contribution of individual interaction types to the retention on the compared columns under those specific experimental conditions. Statistically derived standardized regression coefficients were used to evaluate the contribution of individual molecular interactions within one stationary phase. It has been concluded that intermolecular interactions of the hydrophobic type significantly contribute to retention on all the CSPs studied here. Other retention increasing factors are n- and π-electron interactions and dipole–dipole or dipole-induced dipole ones, while hydrogen donating or accepting interactions are more predominant with the mobile phase than with the stationary phases. However, these types of interactions are not equally significant for all the CSPs studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.