Abstract

We compared the thermal and morphological stability of all-polymer solar cells (all-PSCs) and fullerene-based PSCs (fullerene-PSCs) having the same polymer donor (PBDTTTPD), which provided comparable peak power conversion efficiencies (PCEs) of >6%. We observed a remarkable contrast in thermal stability dependent upon the acceptor composition in the active layer, with the performance of the fullerene-PSCs completely deteriorating after annealing for 5 h at 150 °C, whereas that of the all-PSCs remained stable even after annealing for 50 h at 150 °C. Pronounced phase separation was observed in the active layer of the fullerene-PSCs at two different length scales. In stark contrast, almost no morphological changes in the all-PSCs were observed, likely due to the low diffusion kinetics of the polymer acceptors. To develop a comprehensive understanding of the role of polymer acceptor on the thermal stability of devices, the morphology of ternary blend active layers composed of PBDTTTPD:polymer acceptor:fullere...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call