Abstract

Adsorption states, thermal reactions, and photoreactions at photon energies 2.3–4.7eV of NO dimers and monomers have been compared between 8-nm silver nanoparticles (Ag NPs) formed on an Al2O3/NiAl(110) substrate and flat Ag(111) surfaces, by thermal desorption (TPD) and by photodesorption using mass selected time-of flight measurements. On the Ag NPs, the (NO)2 and NO species are bound more weakly and with broader variation of adsorption states, compared to Ag(111). For (NO)2 excitation of the Mie plasmon of the Ag NPs with p-polarized 3.5-eV photons enhances the photodesorption cross section (PCS) of NO from (NO)2 by a factor 15 compared to Ag(111); even off the plasmon resonance up to 3-fold PCS enhancement is obtained which we ascribe to hot electron confinement. However, since translational energy distributions of photodesorbed NO are roughly the same on Ag NPs and on Ag(111), common mechanisms of photoexcitation and photoreactions apply on both types of surfaces, and neither enhancement modifies the photoinduced dynamics. Stronger particle-induced influences are observed for the photoinduced NO monomer by changes in its properties, chemical environments, and formation/decay kinetics.Our results show that NPs can lead to considerable changes of efficiency and, under favorable cases, also of branching of photoinduced surface reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.