Abstract

Ceramic based prosthetic materials have been used in dental restorations due to their excellent aesthetic and biocompatibility. However, due to concerns related to their mechanical properties and abrasive action against natural teeth, a proper selection of these materials is crucial to preserve the occlusal interactions and prevent abnormal dental wear. The aim of this work is to compare the wear performance of Vita Enamic®, a polymer infiltrated ceramic (PIC), with that of other three commercial ceramic based dental materials - Zirconia, Leucite and Zirconia Veneered - when tested against natural teeth. The crystalline structure, wettability, topography and hardness of the prosthetic materials were characterized before wear testing. Chewing simulator experiments (360,000 cycles, load 49 N) against dental human cusps were carried out using artificial saliva as lubricant. The wear of both teeth and prosthetic materials was quantified and the involved wear mechanisms were analyzed by scanning electron microscopy. The results showed that Zirconia presented the most suitable tribological behavior, since it led to the lowest wear on both occlusal surfaces. The prosthetic material presenting the highest wear was Vita Enamic®. Regarding the cusps’ wear, the highest values were found for both Leucite and Zirconia Veneered. Polishing wear was the main wear mechanism in Zirconia system (prosthetic material and opposing enamel), while in the remaining ones was fragile fracture associated with abrasive wear. No direct relation could be established between wettability, initial roughness and hardness of the prosthetic materials and the wear of the tribological systems. Contrarily, microstructure and toughness revealed to be critical parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.