Abstract

The erosion performance of laser cladded Ni-60 %WC coatings subjected to a controllable abrasive water jet (AWJ) was investigated. The erosion resistance of Ni-60 %WC coatings at varied linear laser energy (from 315 to 700 J/mm) was examined under different impinging angles of a slurry jet. The chemical composition of coatings was modified by nanocrystalline WC powder and the rare earth element (La2O3). The erosion value of Ni-60 %WC was reduced to 40 % by decreasing the laser energy from 700 to 315 J/mm. Synthesized coatings with optimal weight fraction of nano-WC particles (5 %) and La2O3 (1 %) decreased the average microstructural grain size of the Ni-binder, increased the homogeneity and hardness of the coating, and consequently increased the erosion resistivity. The tribological evaluation of the erosion scars showed a log-linear relationship between coating hardness and volume loss under erosion. Adding nano-WC (5 %) and La2O3 (1 %) enhanced the bonding strength between Ni and WC and no pulled out WC particles was observed after erosion test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.