Abstract

In this article, simulation results of novel and facilitated heterostructures of the Second Generation (2G) Thin-film Solar Cells (TFSCs): hydrogenated amorphous Silicon (a-Si:H), Cadmium Telluride (CdTe), and Copper Indium Gallium di-Selenide (Cu(In,Ga)Se2or CIGS) have been presented to compare their performances. The solar cells have been modeled and analyzed for investigating optimized structure with higher stabilized efficiency. Entire simulations have been accomplished using Analysis of Microelectronic and Photonic Structures – 1 Dimensional (AMPS-1D) device simulator. The thickness of the absorber layer was varied from 50 nm to 1400 nm for a-Si:H and from 50 nm to 3 μm for both CdTe and CIGS cells to realize its impact on cell performance. The utmost efficiency, η of 9.134%, 20.776%, and 23.03% were achieved at AM 1.5 (1000 W/m2) for a-Si:H, CdTe, and CIGS material cells, respectively. Lastly, the operating temperature of the three cells was varied from 280°K to 328°K to realize its effect on the cell PV performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.