Abstract

Contamination of soil with crude oil is a serious ecological problem with potential adverse public health effects. This study assessed the germ cell toxicity of simulated leachates from crude oil-contaminated soil before and after bioremediation using the murine sperm abnormality assay, sperm count, and testes histopathology. The levels of Total Testosterone (TT), Follicle Stimulating Hormone (FSH), and Luteinizing Hormone (LH); and activities of catalase (CAT), alkaline phosphatase (ALP), superoxide dismutase (SOD), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were determined. The physicochemical, Total Petroleum Hydrocarbon (TPH), and heavy metal analyses of the leachates were also carried out. Male mice were exposed to 50, 25, 10, 5, and 1% (v/v; leachate:distilled water) of the leachate samples for five consecutive days, and were sacrificed after 35 days. The result showed a statistically significant (p < 0.05), concentration-dependent increase in abnormal sperm cells in exposed mice, with aberrations such as folded sperm, amorphous head, wrong tail attachment, distal droplet, no hook, and looped tail. Data further showed a concentration-dependent significant reduction in mean sperm count in the exposed mice. Alterations of seminiferous tubules with different lesions and activities of ALT, AST, ALP, FSH, LH, and TT were also recorded. The high level of selected heavy metals (As, Cr, Cd, Cu, and Pb) and TPH was believed to contribute to the observed reproductive toxicity and modulated enzyme activities in the treated mice. It is therefore concluded that the microbial remediation of the crude oil contaminated soil produced a reduction in the levels of heavy metals and TPH in the soil, reduced reproductive toxicity, and modulation of enzyme activities. However, the induced reproductive toxicity by the bioremediated soil is still significant, hence, further work could be done to employ a consortium of bacteria and extend the period of the bioremediation process to ensure complete removal of the contaminants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call