Abstract

BackgroundRootstocks play a major role in the tolerance of citrus plants to water deficit by controlling and adjusting the water supply to meet the transpiration demand of the shoots. Alterations in protein abundance in citrus roots are crucial for plant adaptation to water deficit. We performed two-dimensional electrophoresis (2-DE) separation followed by LC/MS/MS to assess the proteome responses of the roots of two citrus rootstocks, Rangpur lime (Citrus limonia Osbeck) and ‘Sunki Maravilha’ (Citrus sunki) mandarin, which show contrasting tolerances to water deficits at the physiological and molecular levels.ResultsChanges in the abundance of 36 and 38 proteins in Rangpur lime and ‘Sunki Maravilha’ mandarin, respectively, were observed via LC/MS/MS in response to water deficit. Multivariate principal component analysis (PCA) of the data revealed major changes in the protein profile of ‘Sunki Maravilha’ in response to water deficit. Additionally, proteomics and systems biology analyses allowed for the general elucidation of the major mechanisms associated with the differential responses to water deficit of both varieties. The defense mechanisms of Rangpur lime included changes in the metabolism of carbohydrates and amino acids as well as in the activation of reactive oxygen species (ROS) detoxification and in the levels of proteins involved in water stress defense. In contrast, the adaptation of ‘Sunki Maravilha’ to stress was aided by the activation of DNA repair and processing proteins.ConclusionsOur study reveals that the levels of a number of proteins involved in various cellular pathways are affected during water deficit in the roots of citrus plants. The results show that acclimatization to water deficit involves specific responses in Rangpur lime and ‘Sunki Maravilha’ mandarin. This study provides insights into the effects of drought on the abundance of proteins in the roots of two varieties of citrus rootstocks. In addition, this work allows for a better understanding of the molecular basis of the response to water deficit in citrus. Further analysis is needed to elucidate the behaviors of the key target proteins involved in this response.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0416-6) contains supplementary material, which is available to authorized users.

Highlights

  • Rootstocks play a major role in the tolerance of citrus plants to water deficit by controlling and adjusting the water supply to meet the transpiration demand of the shoots

  • Considering the soil moisture data from the previous report [17], two sampling points were selected for proteomic analysis as follows: 1) plants grown in soil with moisture ranging from 0.29-0.28 m3m−3 were defined as ‘control’ plants, whereas 2) the soil moisture for ‘drought-stressed’ plants ranged from 0.15-0.14 m3m−3

  • The present study revealed that the levels of a number of proteins involved in various cellular pathways are affected during water deficit in citrus roots

Read more

Summary

Introduction

Rootstocks play a major role in the tolerance of citrus plants to water deficit by controlling and adjusting the water supply to meet the transpiration demand of the shoots. The plant response to water deficit involves several processes, beginning with the perception of stress, followed by modulation of the expression of specific genes, and the appearance numerous transcriptomic, proteomic and metabolomic changes. These changes result in the regulation of metabolism and the generation of regulatory networks that are involved in plant defense against the harmful effects of stress [4,5]. Analysis of 2,100 expressed sequence tags (ESTs) in the roots of Rangpur lime (Citrus limonia Osbeck) subjected to osmotic stress resulted in the identification of genes involved in the water stress response, including those encoding aquaporins, dehydrins, sucrose synthase and enzymes related to the synthesis of proline [6]. Low levels of reactive oxygen species (H2O2 and O2−) were detected in the transgenic plants under salt stress and dehydration

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.